A novel inducer of Roseobacter motility is also a disruptor of algal symbiosis.
نویسندگان
چکیده
Silicibacter sp. strain TM1040, a member of the Roseobacter clade, forms a symbiosis with unicellular phytoplankton, which is inextricably linked to the biphasic "swim or stick" lifestyle of the bacteria. Mutations in flaC bias the population toward the motile phase. Renewed examination of the FlaC(-) strain (HG1016) uncovered that it is composed of two different cells: a pigmented type, PS01, and a nonpigmented cell, PS02, each of which has an identical mutation in flaC. While monocultures of PS01 and PS02 had few motile cells (0.6 and 6%, respectively), coculturing the two strains resulted in a 10-fold increase in the number of motile cells. Cell-free supernatants from coculture or wild-type cells were fully capable of restoring motility to PS01 and PS02, which was due to increased fliC3 (flagellin) transcription, FliC3 protein levels per cell, and flagella synthesis. The motility-inducing compound has an estimated mass of 226 Da, as determined by mass spectrometry, and is referred to as Roseobacter Motility Inducer (RMI). Mutations affecting genes involved in phenyl acetic acid synthesis significantly reduced RMI, while defects in tropodithietic acid (TDA) synthesis had marginal or no effect on RMI. RMI biosynthesis is induced by p-coumaric acid, a product of algal lignin degradation. When added to algal cultures, RMI caused loss of motility, cell enlargement, and vacuolization in the algal cells. RMI is a new member of the roseobacticide family of troponoid compounds whose activities affect roseobacters, by shifting their population toward motility, as well as their phytoplankton hosts, through an algicidal effect.
منابع مشابه
Roseobacticides: Small Molecule Modulators of an Algal-Bacterial Symbiosis
Marine bacteria and microalgae engage in dynamic symbioses mediated by small molecules. A recent study of Phaeobacter gallaeciensis, a member of the large roseobacter clade of α-proteobacteria, and Emiliania huxleyi, a prominent member of the microphytoplankton found in large algal blooms, revealed that an algal senescence signal produced by E. huxleyi elicits the production of novel algaecides...
متن کاملInvestigation of the Genetics and Biochemistry of Roseobacticide Production in the Roseobacter Clade Bacterium Phaeobacter inhibens.
Roseobacterclade bacteria are abundant in surface waters and are among the most metabolically diverse and ecologically significant species. This group includes opportunistic symbionts that associate with micro- and macroalgae. We have proposed that one representative member,Phaeobacter inhibens, engages in a dynamic symbiosis with the microalgaEmiliania huxleyi In one phase, mutualistically ben...
متن کاملCultivation and ecosystem role of a marine roseobacter clade-affiliated cluster bacterium.
Isolation and cultivation are a crucial step in elucidating the physiology, biogeochemistry, and ecosystem role of microorganisms. Many abundant marine bacteria, including the widespread Roseobacter clade-affiliated (RCA) cluster group, have not been cultured with traditional methods. Using novel techniques of cocultivation with algal cultures, we have accomplished successful isolation and prop...
متن کاملA Novel Open Raceway Pond Design for Microalgae Growth and Nutrients Removal from Treated Slaughterhouse Wastewater
The present work investigates nitrate and phosphate removal from synthetic treated slaughterhouse wastewater in a novel open raceway pond with sedimentation zone. For this purpose, microalgae Chlorella salina has been cultivated in synthetic wastewater and sedimentation zone has been added to enhance both algae separation in the system and nutrient removal. The effectiveness of Chlorella salina...
متن کاملA Novel Open Raceway Pond Design for Microalgae Growth and Nutrients Removal from Treated Slaughterhouse Wastewater
The present work investigates nitrate and phosphate removal from synthetic treated slaughterhouse wastewater in a novel open raceway pond with sedimentation zone. For this purpose, microalgae Chlorella salina has been cultivated in synthetic wastewater and sedimentation zone has been added to enhance both algae separation in the system and nutrient removal. The effectiveness of Chlorella salina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 195 4 شماره
صفحات -
تاریخ انتشار 2013